
18/9/2007 I2A 98 slides 12 1 Richard Bornat
Dept of Computer Science

The beautiful binary heap.

Weiss has a chapter on the binary heap - chapter 20,
pp581-601.

It’s a very neat implementation of the binary tree
idea, using an array.

We can use the binary heap to sort an array, and we
can use it to make a priority queue (see the Dijkstra
and A* algorithms above).

Used for sorting, we get O N Nlg() performance and
we use O 1() space.

Used as a priority queue, we can guarantee O Nlg()
insert / delete performance - far better than an ordered
list or binary chop insert / delete.

18/9/2007 I2A 98 slides 12 2 Richard Bornat
Dept of Computer Science

We abandon a distinction between leaves and internal
nodes of our binary trees. We read the trees as if they
were written in rows (this tree has four rows)

A

B

D E

H I J

C

F G

and define a complete binary tree as one in which
every row is filled, except possibly the last, and the
last is filled from left to right.

When we add a node to a complete binary tree there
is always only one place where it can go: in the
picture above it must be the missing right child of E.
The next node would be added as the left child of F,
and so on.

18/9/2007 I2A 98 slides 12 3 Richard Bornat
Dept of Computer Science

Once the fourth row is filled we would start on the
fifth and add a left child for H:

A

B

D E

H I J

C

F G

L M N OK

P

If we delete a node from a complete binary tree it
must be the rightmost node in the last row – to
preserve the complete binary tree property.

The reason for the complete binary tree property is
that we can write a cbt in an array. The root goes in
position 1, the next row in positions 2 and 3, the next
in 4-7, the next in 8-15, and so on. We keep a record
of the limit of the tree:

A B C D E F G H I J

1 2 30 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

18/9/2007 I2A 98 slides 12 4 Richard Bornat
Dept of Computer Science

The effect is that the children of the node in position i
are always found in position 2i and 2i+1 (provided
that those are within the limit of the tree); conversely
the parent of the node in position j is always found in
position j ÷ 2 (apart from the root, which has no
parent).

This gives binary-tree manipulation ‘for free’,
without the overhead of links, references, pointers,
whatever.

This array version of a complete binary tree is the
binary heap.

I illustrate the examples by using complete binary
trees, but write code using the binary heap.
class Element { public Key k; public Data d; }

class BinaryHeap {
 private Element[] H; int count; // number of things in the heap
 ...
}

18/9/2007 I2A 98 slides 12 5 Richard Bornat
Dept of Computer Science

Ordered binary heaps.

In an ordered binary heap, each node comes before
(!) its children, each child comes after its parents.

" ! < # !()÷i i count H Hi i2 2

That’s the only condition we need – unlike binary
dictionary trees, we don’t have any ordering between
the children or between subtrees.

It follows from this definition that the root of an
ordered binary heap is a minimum element of the
heap. Access to the minimum element is therefore
very fast: O 1() because it is always found in H1.

18/9/2007 I2A 98 slides 12 6 Richard Bornat
Dept of Computer Science

Insertion into an ordered binary heap.

Insertion turns out to be O Nlg(). It has to preserve
the ordering property, but that turns out to be easy.

Consider this ordered binary heap, and the problem of
inserting a new element into it (at the position marked
with an empty circle):

14

62

80 85

100 85 90

26

14433

We can insert large numbers (85!) without moving
anything.

18/9/2007 I2A 98 slides 12 7 Richard Bornat
Dept of Computer Science

But if we insert 40 at that position, then heap order is
destroyed: we must exchange it with its parent:

14

62

80 40

100 85 90

26

14433

85

and then exchange again before heap order is
restored:

14

40

80 62

100 85 90

26

14433

85

18/9/2007 I2A 98 slides 12 8 Richard Bornat
Dept of Computer Science

We can save a bit of time when we realise that we
don’t have to do any exchanges, just slide things
around till the hole is in the right place:

14

80 62

100 85 90

26

14433

85

40

This is called ‘bubbling up’ a hole in the structure:
public void insert(Key k, Data d) {
 count++; bubbleup(k,d,count); // H[1..count] are valid elements
}

private void bubbleup(Key k, Data d, int i) {
 int j;
 for (; j=i/2, i!=1 && !H[j].key.lesseq(k); i=j)
 H[i]=H[j];
 H[i].key=k; H[i].data=d;
}

Clearly this takes O Nlg() time: it halves i repeatedly
until it is 1 or it finds a position where Hi’s parent is
(!k). In the worst case this can only take lgN steps.

18/9/2007 I2A 98 slides 12 9 Richard Bornat
Dept of Computer Science

We can make it faster still by the method of sentinels
if we put a value $% in H0: then we can avoid the
i!=1 test. It’s easy to do that with a special Key
value:
class Stopper implements Key {
 public boolean equals(Key k) { return k instanceof Stopper; }
 public boolean lesseq(Key k) { return true; }
}

18/9/2007 I2A 98 slides 12 10 Richard Bornat
Dept of Computer Science

Deleting from an ordered binary heap.

We want, both when sorting and when running a
priority queue, to delete the element in H1. But to
keep the heap ordered we actually have to delete the
rightmost element on the last row.

The minimum element in this tree is 14:

14

40

80 62

100 85 90

26

14433

85

18/9/2007 I2A 98 slides 12 11 Richard Bornat
Dept of Computer Science

We begin by taking away that minimum element,
leaving a hole; Then we delete the rightmost element
on the last row and try to see if it will fit in the hole:

40

80 62

100 85 90

26

14433

85

If it won’t, we slide the smallest of the children into
the hole and try again:

40

80 62

100 85 90

26

14433

85

18/9/2007 I2A 98 slides 12 12 Richard Bornat
Dept of Computer Science

Yet another slide needed:

40

80 62

100 85 90

26

144

33

85

Now we can put 85 into the hole, and the heap order
is restored. This is called ‘bubbling down’:
public Data remove() {
 Data d = H[1].d;
 H[1]=H[count--]; bubbledown(1);
 return d;
}

public void bubbledown(int i) {
 Element r = H[i]; int j;
 for (; j=i*2, j<=count; i=j) {
 if (j+1<=count && H[j+1].k.lesseq(H[j].k))
 j++; // pick left or right child
 if (r.k.lesseq(H[j].k)) break; // exit if in order
 else H[i]=H[j];
 }
 H[i]=r;
}

18/9/2007 I2A 98 slides 12 13 Richard Bornat
Dept of Computer Science

This is obviously O Nlg() because it works by
repeatedly doubling until it reaches count or a
position where element r can be assigned whilst
preserving heap order.

Now in the Dijkstra algorithm and the A* algorithm
we have to use a priority queue: a binary heap does
the job perfectly, with optimal efficiency: O Nlg()
insertion, O Nlg() removal.

18/9/2007 I2A 98 slides 12 14 Richard Bornat
Dept of Computer Science

Sorting using an ordered binary heap.

We can impose heap order on an unsorted array in
O N() time, by using N ÷ 2 calls of bubbledown:
for (int i=count/2; i>0; i--) bubbledown(i);

Weiss shows (p596, p611) that the sum of the heights
of the nodes in a complete binary tree is O N(); it
follows that this code must execute in O N() time.

Once we have heap order, we can extract the
minimum element. That moves the last element into
position into the tree and leaves an empty slot; we can
move the old root element into that slot. It takes
O Nlg() time to do that:
Element r = H[1]; remove(); H[count+1]=r;

Repeat that N times and we have a sorting algorithm,
because H count1.. will be in the opposite order to the
heap order (minimum element last, maximum
element first).

This is an O N Nlg()-time sort which uses O 1() space!

18/9/2007 I2A 98 slides 12 15 Richard Bornat
Dept of Computer Science

You need some arithmetic trickery to deal with the
fact that an array starts at position 0 but a heap starts
at position 1, and you might want to reverse the
notion of heap order to make your result come out in
(!) order ...

Truly the binary heap is a wonderful data
structure, and its algorithms are wonderful too.

